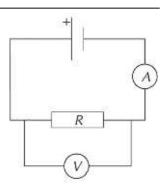
Name:	Class:

Total Possible Marks: 16

Resistance and IV Characteristics

____ 1.

STATE OF THE PARTY OF THE PARTY


(a) Resistance	is anything in	is anything in the (b) circuit which (c) reduces				
the (d) flow	of (e) curre	rent It is measured in ohms. The current flowing				
through a (f) componen	h a <u>(f) component</u> depends upon the <u>(g) potential</u> difference across it					
and the resistance of th	e component its	elf.				
The (h) greater the resistance of a component, then the (i) smaller the						
current flowing through it for a given potential (j) difference, factors all linked together in						
the expression:						
V = IR						
circuit co	mponent	potential	Resistance	greater		
difference sm	naller	current	flow	reduces		

6

2. The relationship between potential difference current and resistance is given by the expression:

$$V = I \times R$$

Where V is the potential difference measured in volts, I is the current

* Allocate one mark for the calculation, that is the correct transposition of the equation and a 2nd mark for the correct answer

measured in amperes and R is a resistance measured in ohms.

___a. A voltmeter in a circuit across a resistor of resistance 4 ohms displays a reading of 6 V. An ammeter connected to the circuit would display what reading in amperes?

Given the expression above we know that V = IR so by rearrangement I = V / R. Substituting known values of V and R:

I = 6 / 4 = 1.5 amperes

b. The resistor is exchanged for another one, this time the ammeter reached 3 A, if the potential difference remains the same what is the resistance of the new component?

Using V = IR and rearranging for R = V / I we simply plug in the known values of 6 V and 3 A to reach a value of 2 ohms.

___c. If we increase the potential difference by 100% and take a reading from the ammeter of 0.000025 A (25 micro amps) what is the resistance of the resistor component now?

Increasing the potential difference by 100% simply means doubling it to 12 V, using the expression R = V / I and substituting our known values we arrive at a resistance of:

R = 12 / 0.000025 = 480,000 ohms which could also be written as 480 k Ω or 0.48 M Ω