Name:	Class:

Total Possible Marks: 16

Resistance and IV Characteristics

1. 10

		//		
<u>(a)</u>	is anything i	n the (b)	which	<u>(c)</u>
the (d)	of <u>(e)</u>		It is measured in	ohms. The current flowing
through a (f)	de	epends upon th	ne (g)	difference across it
and the resistar	nce of the component it	self.		
The (h)	the resist	ance of a com	ponent, then the (i)	the
current flowing	through it for a given po	otential <u>(j)</u>	, fac	ctors all linked together in
the expression:				
		V = 1	IR	
circuit	component	potential	Resistance	greater

6

2. The relationship between potential difference current and resistance is given by the expression:

$$V = I \times R$$

Where V is the potential difference measured in volts, I is the current measured in amperes and R is a resistance measured in ohms.

___a. A voltmeter in a circuit across a resistor of resistance 4 ohms displays a reading of 6 V. An ammeter connected to the circuit would display what reading in amperes?

The resistor is exchanged for another one, this time the ammeter reached 3 A, if the potential difference remains the same what is the resistance of the new component?

___c. If we increase the potential difference by 100% and take a reading from the ammeter of 0.000025 A (25 micro amps) what is the resistance of the resistor component now?